System for capture or immunoprecipitation of a protein-dna complex
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a novel optofluidic differential method for carrying out absorbance spectroscopy of subnanolitre volumes of liquid samples on a microfluidic chip. Due to the reduction of liquid volume, the absorbance detection in microfluidics is often hindered ...
We present a microfluidic device for on-chip analysis of low-concentration protein biomarkers. A new detection method, based on the magnetic capture of proteins via superparamagnetic beads and counting the surface coverage of the latter is presented. The p ...
Fragmentation of DNA is an essential step for many biological applications including the preparation of next-generation sequencing (NGS) libraries. As sequencing technologies push the limits towards single cell and single molecule resolution, it is of grea ...
Quantitative biology requires quantitative data. No high-throughput technologies exist capable of obtaining several hundred independent kinetic binding measurements in a single experiment. We present an integrated microfluidic device (k-MITOMI) for the sim ...
Research on microfluidic devices for biological analysis has progressed sufficiently to be developed into point-of-care diagnostics products. The goal of this thesis is to improve multiple aspects of capillary-driven microfluidic devices. In particular, th ...
We might be at the turning point where research in microfluidics undertaken in academia and industrial research laboratories, and substantially sponsored by public grants, may provide a range of portable and networked diagnostic devices. In this Progress R ...
We present a novel nonenzymatic carbon nanotube sensor integrated in a microfluidic channel for the detection of sugars. The sensor is assembled as a liquid-gated field-effect transistor, with the transistor channel composed of 1 to 10 nanotubes, which are ...
Methods to manipulate and visualize isolated DNA and oligonucleotide strands are important for investigation of their biophysics as well as their interactions with proteins. Herein, we report such a method by combining a block copolymer surface functionali ...
Microfluidic technology has revolutionized the control of flows at small scales giving rise to new possibilities for assembling complex structures on the microscale. We analyze different possible algorithms for assembling arbitrary structures, and demonstr ...
Microfluidic bio-assays have emerged as the most privileged solutions and provide the basis for the realization of miniaturized bio-analytical systems and clinical diagnostic devices that are portable, user-friendly and cost-effective (Lab-on-a-chip). Two ...