Čech cohomologyIn mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech. Let X be a topological space, and let be an open cover of X. Let denote the nerve of the covering. The idea of Čech cohomology is that, for an open cover consisting of sufficiently small open sets, the resulting simplicial complex should be a good combinatorial model for the space X.
Jacobi polynomialsIn mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. The Jacobi polynomials are defined via the hypergeometric function as follows: where is Pochhammer's symbol (for the rising factorial).
Projective bundleIn mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme X over a Noetherian scheme S is a Pn-bundle if it is locally a projective n-space; i.e., and transition automorphisms are linear. Over a regular scheme S such as a smooth variety, every projective bundle is of the form for some vector bundle (locally free sheaf) E. Every vector bundle over a variety X gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an obstruction in the cohomology group H2(X,O*).
Polynomial ringIn mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
Frame bundleIn mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle.
Ddbar lemmaIn complex geometry, the lemma (pronounced ddbar lemma) is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .
Four-dimensional spaceFour-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world. For example, the volume of a rectangular box is found by measuring and multiplying its length, width, and height (often labeled x, y, and z).
Tangent bundleIn differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is, where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at . There is a natural projection defined by . This projection maps each element of the tangent space to the single point .
Lagrange polynomialIn numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs with the are called nodes and the are called values. The Lagrange polynomial has degree and assumes each value at the corresponding node, Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler.
Symmetric polynomialIn mathematics, a symmetric polynomial is a polynomial P(X1, X2, ..., Xn) in n variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, P is a symmetric polynomial if for any permutation σ of the subscripts 1, 2, ..., n one has P(Xσ(1), Xσ(2), ..., Xσ(n)) = P(X1, X2, ..., Xn). Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting.