**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Michael Atiyah

Summary

Sir Michael Francis Atiyah (əˈtiːə; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004.
Atiyah was born on 22 April 1929 in Hampstead, London, England, the son of Jean (née Levens) and Edward Atiyah. His mother was Scottish and his father was a Lebanese Orthodox Christian. He had two brothers, Patrick (deceased) and Joe, and a sister, Selma (deceased). Atiyah went to primary school at the Diocesan school in Khartoum, Sudan (1934–1941), and to secondary school at Victoria College in Cairo and Alexandria (1941–1945); the school was also attended by European nobility displaced by the Second World War and some future leaders of Arab nations. He returned to England and Manchester Grammar School for his HSC studies (1945–1947) and did his national service with the Royal Electrical and Mechanical Engineers (1947–1949). His undergraduate and postgraduate studies took place at Trinity College, Cambridge (1949–1955). He was a doctoral student of William V. D. Hodge and was awarded a doctorate in 1955 for a thesis entitled Some Applications of Topological Methods in Algebraic Geometry.
Atiyah was a member of the British Humanist Association.
During his time at Cambridge, he was president of The Archimedeans.
Atiyah spent the academic year 1955–1956 at the Institute for Advanced Study, Princeton, then returned to Cambridge University, where he was a research fellow and assistant lecturer (1957–1958), then a university lecturer and tutorial fellow at Pembroke College, Cambridge (1958–1961). In 1961, he moved to the University of Oxford, where he was a reader and professorial fellow at St Catherine's College (1961–1963). He became Savilian Professor of Geometry and a professorial fellow of New College, Oxford, from 1963 to 1969.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (4)

Related publications (32)

PHYS-432: Quantum field theory II

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

PHYS-426: Quantum physics IV

Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,

Related lectures (27)

Ontological neighbourhood

Related concepts (32)

Explores Feynman rules in QED, emphasizing normal ordered product and Wick's theorem, instantons, and relativistic amplitudes.

Covers gauge theories, modern particle physics, the standard model, and field content.

Covers Quantum Electrodynamics (QED), instantons, Feynman rules, and gauge theories in modern particle physics.

Algebraic topology

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.

Atiyah–Singer index theorem

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data). It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

Gauge theory

In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.

We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...

, ,

Dimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually br ...

,

The interplay of topological characteristics in real space and reciprocal space can lead to the emergence of unconventional topological phases. In this Letter, we implement a novel mechanism for generating higher-Chern flat bands on the basis of twisted bi ...