Adiabatic processIn thermodynamics, an adiabatic process (Greek: adiábatos, "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics. Some chemical and physical processes occur too rapidly for energy to enter or leave the system as heat, allowing a convenient "adiabatic approximation".
Molecular dynamicsMolecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields.
Heisenberg pictureIn physics, the Heisenberg picture or Heisenberg representation is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which the operators (observables and others) incorporate a dependency on time, but the state vectors are time-independent, an arbitrary fixed basis rigidly underlying the theory. It stands in contrast to the Schrödinger picture in which the operators are constant, instead, and the states evolve in time.
Solution of Schrödinger equation for a step potentialIn quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves. The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension. Typically, the potential is modeled as a Heaviside step function. The time-independent Schrödinger equation for the wave function is where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle.
Tensor product of graphsIn graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and vertices (g,h) and math|(''g,h' ) are adjacent in G × H if and only if g is adjacent to g' in G, and h is adjacent to h' in H. The tensor product is also called the direct product, Kronecker product, categorical product, cardinal product, relational product, weak direct product, or conjunction'''.
CollinearityIn geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row". In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line".
World Community GridWorld Community Grid (WCG) is an effort to create the world's largest volunteer computing platform to tackle scientific research that benefits humanity. Launched on November 16, 2004, with proprietary Grid MP client from United Devices and adding support for Berkeley Open Infrastructure for Network Computing (BOINC) in 2005, World Community Grid eventually discontinued the Grid MP client and consolidated on the BOINC platform in 2008.
Cartesian product of graphsIn graph theory, the Cartesian product G □ H of graphs G and H is a graph such that: the vertex set of G □ H is the Cartesian product V(G) × V(H); and two vertices (u,u' ) and (v,v' ) are adjacent in G □ H if and only if either u = v and u' is adjacent to v' in H, or u' = v' and u is adjacent to v in G. The Cartesian product of graphs is sometimes called the box product of graphs [Harary 1969]. The operation is associative, as the graphs (F □ G) □ H and F □ (G □ H) are naturally isomorphic.