Robust myelin water imaging from multi-echo T2 data using second-order Tikhonov regularization with control points
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a m ...
Noniterative data-driven techniques are design methods that allow optimal feedback control laws to be derived from input-output (I/O) data only, without the need of a model of the process. A drawback of these methods is that, in their standard formulation, ...
Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupt ...
We investigate the relation of two fundamental tools in machine learning and signal processing, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are eq ...
Machine learning is most often cast as an optimization problem. Ideally, one expects a convex objective function to rely on efficient convex optimizers with nice guarantees such as no local optima. Yet, non-convexity is very frequent in practice and it may ...
Our contribution in this paper is two fold. First, we propose a novel discretization of the forward model for differential phase-contrast imaging that uses B-spline basis functions. The approach yields a fast and accurate algorithm for implementing the for ...
We consider the transfer learning scenario, where the learner does not have access to the source domain directly, but rather operates on the basis of hypotheses induced from it - the Hypothesis Transfer Learning (HTL) problem. Particularly, we conduct a th ...
This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns called motifs from documents given as word×time count matrices (e.g., videos). In this model, documents are represented as a mixture of sequenti ...
The Virtual Reference Feedback Tuning (VRFT) approach is a design method that allow optimal feedback control laws to be derived from input-output (I/O) data only, without need of a model of the process. A drawback of this methods is that, in its standard f ...
Our contribution in this paper is two fold. First, we propose a novel discretization of the forward model for differential phase-contrast imaging that uses B-spline basis functions. The approach yields a fast and accurate algorithm for implementing the fo ...