Publication

Beyond Phasors: Modeling of Power System Signals Using the Hilbert Transform

Abstract

Modern power systems are at risk of largely reducing the inertia of generation assets and prone to experience extreme dynamics. The consequence is that, during electromechanical transients triggered by large contingencies, transmission of electrical power may take place in a wide spectrum well beyond the single fundamental component. Traditional modeling approaches rely on the phasor representation derived from the Fourier Transform (FT) of the signal under analysis. During large transients, though, FT-based analysis may fail to accurately identify the fundamental component parameters, in terms of amplitude, frequency and phase. Taking inspiration from the theory on analytic signals, this paper proposes a different approach to model signals of power systems electromechanical transients based on the Hilbert transform (HT). We compare FT- and HT-based approaches during representative operating conditions, i.e., amplitude modulations, frequency ramps and step changes, in synthetic and real-world datasets. We further validate the approaches using a contingency analysis on the IEEE 39-bus.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.