**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Search for additional neutral MSSM Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

Muhammad Ahmad, Benjamin William Allen, Georgios Anagnostou, Konstantin Androsov, Tagir Aushev, Michele Bianco, Roberto Castello, Xin Chen, Yixing Chen, Tian Cheng, Davide Cieri, Giuseppe Codispoti, Pratyush Das, Abhisek Datta, Alessandro Degano, Milos Dordevic, Dipanwita Dutta, Matthias Finger, Francesco Fiori, Daniel Gonzalez, Ruchi Gupta, Seungkyu Ha, Csaba Hajdu, Peter Hansen, Ali Harb, Miao Hu, Alexis Kalogeropoulos, Viktor Khristenko, Ji Hyun Kim, Donghyun Kim, Ajay Kumar, Sanjeev Kumar, Vineet Kumar, Ekaterina Kuznetsova, Wei Li, Ho Ling Li, Jing Li, Shuai Liu, Zhen Liu, Hao Liu, Werner Lustermann, Bibhuprasad Mahakud, Maren Tabea Meinhard, Amr Mohamed, Thomas Muller, Ioannis Papadopoulos, Vladimir Petrov, Quentin Python, Andrea Rizzi, Paolo Ronchese, Ashish Sharma, Varun Sharma, Lesya Shchutska, Wei Shi, Kun Shi, Muhammad Shoaib, Gurpreet Singh, Jan Steggemann, Marco Trovato, Andromachi Tsirou, David Vannerom, Joao Varela, Hui Wang, Qian Wang, Mingkui Wang, Zheng Wang, Yi Wang, Siyuan Wang, Jian Wang, Muhammad Waqas, Matthias Weber, Matthias Wolf, Wenjing Wu, Fan Xia, Meng Xiao, Zhirui Xu, Yong Yang, Kai Yi

2018

Journal paper

2018

Journal paper

Abstract

A search is presented for additional neutral Higgs bosons in the τ τ final state in proton-proton collisions at the LHC. The search is performed in the context of the minimal supersymmetric extension of the standard model (MSSM), using the data collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{−1}$. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes production of the Higgs boson in association with b quarks. No significant deviation above the expected background is observed. Model-independent limits at 95% confidence level (CL) are set on the product of the branching fraction for the decay into τ leptons and the cross section for the production via gluon fusion or in association with b quarks. These limits range from 18 pb at 90 GeV to 3.5 fb at 3.2 TeV for gluon fusion and from 15 pb (at 90 GeV) to 2.5 fb (at 3.2 TeV) for production in association with b quarks, assuming a narrow width resonance. In the m$_{h}^{hod +}$ scenario these limits translate into a 95% CL exclusion of tan β > 6 for neutral Higgs boson masses below 250 GeV, where tan β is the ratio of the vacuum expectation values of the neutral components of the two Higgs doublets. The 95% CL exclusion contour reaches 1.6 TeV for tan β = 60.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (110)

Loading

Loading

Loading

Related concepts (24)

Luminosity

Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromag

Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and cla

Confidence interval

In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level i

Muhammad Ahmad, Benjamin William Allen, Georgios Anagnostou, Konstantin Androsov, Tagir Aushev, Michele Bianco, Yixing Chen, Xin Chen, Tian Cheng, Davide Cieri, Giuseppe Codispoti, Pratyush Das, Abhisek Datta, Milos Dordevic, Dipanwita Dutta, Matthias Finger, Daniel Gonzalez, Ruchi Gupta, Seungkyu Ha, Csaba Hajdu, Peter Hansen, Ali Harb, Miao Hu, Alexis Kalogeropoulos, Viktor Khristenko, Ji Hyun Kim, Donghyun Kim, Sanjeev Kumar, Vineet Kumar, Ajay Kumar, Ekaterina Kuznetsova, Ho Ling Li, Wei Li, Jing Li, Zhen Liu, Shuai Liu, Hao Liu, Werner Lustermann, Bibhuprasad Mahakud, Maren Tabea Meinhard, Thomas Muller, Ioannis Papadopoulos, Vladimir Petrov, Quentin Python, Andrea Rizzi, Paolo Ronchese, Sourav Sen, Varun Sharma, Ashish Sharma, Lesya Shchutska, Wei Shi, Kun Shi, Muhammad Shoaib, Gurpreet Singh, Jan Steggemann, Marco Trovato, Andromachi Tsirou, David Vannerom, Joao Varela, Hui Wang, Mingkui Wang, Jian Wang, Qian Wang, Yi Wang, Zheng Wang, Siyuan Wang, Muhammad Waqas, Matthias Weber, Matthias Wolf, Fan Xia, Meng Xiao, Zhirui Xu, Yong Yang

A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy s=13 TeV, corresponding to an integrated luminosity of 35.9 fb-1. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times the branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies s=7 and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviation. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviation. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4×10-4 and to an observed signal strength of 1.0±1.0(stat)±0.1(syst).

2019Muhammad Ahmad, Benjamin William Allen, Georgios Anagnostou, Konstantin Androsov, Tagir Aushev, Michele Bianco, Roberto Castello, Xin Chen, Yixing Chen, Tian Cheng, Davide Cieri, Giuseppe Codispoti, Pratyush Das, Abhisek Datta, Alessandro Degano, Milos Dordevic, Dipanwita Dutta, Matthias Finger, Francesco Fiori, Daniel Gonzalez, Ruchi Gupta, Seungkyu Ha, Csaba Hajdu, Peter Hansen, Ali Harb, Miao Hu, Alexis Kalogeropoulos, Viktor Khristenko, Ji Hyun Kim, Donghyun Kim, Vineet Kumar, Sanjeev Kumar, Ajay Kumar, Ekaterina Kuznetsova, Ho Ling Li, Jing Li, Wei Li, Shuai Liu, Zhen Liu, Hao Liu, Werner Lustermann, Bibhuprasad Mahakud, Maren Tabea Meinhard, Thomas Muller, Ioannis Papadopoulos, Vladimir Petrov, Quentin Python, Andrea Rizzi, Paolo Ronchese, Varun Sharma, Ashish Sharma, Lesya Shchutska, Wei Shi, Kun Shi, Muhammad Shoaib, Gurpreet Singh, Jan Steggemann, Marco Trovato, Andromachi Tsirou, David Vannerom, Joao Varela, Zheng Wang, Yi Wang, Mingkui Wang, Jian Wang, Siyuan Wang, Hui Wang, Qian Wang, Muhammad Waqas, Matthias Weber, Matthias Wolf, Wenjing Wu, Fan Xia, Meng Xiao, Zhirui Xu, Yong Yang, Kai Yi

A search is presented for massive narrow resonances decaying either into two Higgs bosons, or into a Higgs boson and a W or Z boson. The decay channels considered are $\mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}{\tau}^{+}{\tau}^{-}$ and $\mathrm{V}\mathrm{H}\to \mathrm{q}\overline{\mathrm{q}}{\tau}^{+}{\tau}^{-}$ , where H denotes the Higgs boson, and V denotes the W or Z boson. This analysis is based on a data sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV by the CMS Collaboration, corresponding to an integrated luminosity of 35.9 fb$^{−1}$. For the TeV-scale mass resonances considered, substructure techniques provide ways to differentiate among the hadronization products from vector boson decays to quarks, Higgs boson decays to bottom quarks, and quark- or gluon-induced jets. Reconstruction techniques are used that have been specifically optimized to select events in which the tau lepton pair is highly boosted. The observed data are consistent with standard model expectations and upper limits are set at 95% confidence level on the product of cross section and branching fraction for resonance masses between 0.9 and 4.0 TeV. Exclusion limits are set in the context of bulk radion and graviton models:spin-0 radion resonances are excluded below a mass of 2.7 TeV at 95% confidence level. In the spin-1 heavy vector triplet framework, mass-degenerate W′ and Z′ resonances with dominant couplings to the standard model gauge bosons are excluded below a mass of 2.8 TeV at 95% confidence level. These are the first limits for massive resonances at the TeV scale with these decay channels at $\sqrt{s}=13$ TeV.

Muhammad Ahmad, Georgios Anagnostou, Konstantin Androsov, Giovanni Bianchi, Roberto Castello, Yixing Chen, Jie Chen, Tian Cheng, Giuseppe Codispoti, Alessandro Degano, Charles Dietz, Milos Dordevic, Dipanwita Dutta, Matthias Finger, Francesco Fiori, Yu Fu, Yifei Guo, Ruchi Gupta, Csaba Hajdu, Alexis Kalogeropoulos, Donghyun Kim, Ji Hyun Kim, Sanjeev Kumar, Vineet Kumar, Ajay Kumar, Ekaterina Kuznetsova, Ho Ling Li, Wei Li, Shuai Liu, Hao Liu, Werner Lustermann, Matteo Marone, Thomas Muller, Ioannis Papadopoulos, Vladimir Petrov, Andrea Rizzi, Paolo Ronchese, Sourav Sen, Varun Sharma, Ashish Sharma, Lesya Shchutska, Muhammad Shoaib, Michal Simon, Gurpreet Singh, Jan Steggemann, Wei Sun, Andromachi Tsirou, Paul Turner, Joao Varela, Jian Wang, Xiao Wang, Mingkui Wang, Zheng Wang, Qian Wang, Matthias Weber, Matthias Wolf, Wenjing Wu, Fan Yang, Yong Yang, Kai Yi, Lei Zhang, Yu Zheng

A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5 fb-1 of proton-proton collisions with center-of-mass energy s=8 TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying τ leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t→cH), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, λtcH and λctH, respectively, of |λtcH|2+|λctH|2<0.21.

2014