Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Recent studies demonstrate novel metamaterials featuring unique properties by combining origami-inspired designs with additive manufacturing. In particular, the use of flexural hinges endow distinct advantages toward miniaturization and fabrication; however, there are limited applications due to the limited loading and fatigue resistance of the hinges. In this study, we focus on testing and characterizing mechanical properties of flexural hinges so that our findings could have immediate applications in 3D-printed origami structures. We introduce an aramid fiber composite hinge and compare it to a single-material polyamide and a multimaterial photopolymer hinge. We investigate the impact of the materials and geometric design parameters on the load carrying capability and flexural properties. Furthermore, the fatigue behavior of the hinges is characterized, identifying the constitutive mechanisms. We consolidate all the data and findings to construct a comprehensive design parameter – property map, which serves as a guideline for optimizing hinge performance for a given set of required properties.
John Botsis, Georgios Pappas, Charlie Joseph Simon Blondeau
Jamie Paik, Jian-Lin Huang, Ralph Spolenak