Thompson groupsIn mathematics, the Thompson groups (also called Thompson's groups, vagabond groups or chameleon groups) are three groups, commonly denoted , that were introduced by Richard Thompson in some unpublished handwritten notes in 1965 as a possible counterexample to the von Neumann conjecture. Of the three, F is the most widely studied, and is sometimes referred to as the Thompson group or Thompson's group. The Thompson groups, and F in particular, have a collection of unusual properties that have made them counterexamples to many general conjectures in group theory.
Additive groupAn additive group is a group of which the group operation is to be thought of as addition in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structures equipped with several operations for specifying the structure obtained by forgetting the other operations. Examples include the additive group of the integers, of a vector space and of a ring. This is particularly useful with rings and fields to distinguish the additive underlying group from the multiplicative group of the invertible elements.
Discrete groupIn mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
Classical groupIn mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups.
Rank of an abelian groupIn mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup.
Dynamical systemIn mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured.
Group of Lie typeIn mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
Henri LebesgueHenri Léon Lebesgue (ɑ̃ʁi leɔ̃ ləbɛɡ; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis. His theory was published originally in his dissertation Intégrale, longueur, aire ("Integral, length, area") at the University of Nancy during 1902. Henri Lebesgue was born on 28 June 1875 in Beauvais, Oise.
Quotient ringIn ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and ⋅ operations.
HomeomorphismIn the mathematical field of topology, a homeomorphism (, named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the —that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.