In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.
The classical groups form the deepest and most useful part of the subject of linear Lie groups. Most types of classical groups find application in classical and modern physics. A few examples are the following. The rotation group SO(3) is a symmetry of Euclidean space and all fundamental laws of physics, the Lorentz group O(3,1) is a symmetry group of spacetime of special relativity. The special unitary group SU(3) is the symmetry group of quantum chromodynamics and the symplectic group Sp(m) finds application in Hamiltonian mechanics and quantum mechanical versions of it.
The classical groups are exactly the general linear groups over R, C and H together with the automorphism groups of non-degenerate forms discussed below. These groups are usually additionally restricted to the subgroups whose elements have determinant 1, so that their centers are discrete. The classical groups, with the determinant 1 condition, are listed in the table below. In the sequel, the determinant 1 condition is not used consistently in the interest of greater generality.
The complex classical groups are SL(n, C), SO(n, C) and Sp(n, C). A group is complex according to whether its Lie algebra is complex.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
In linear algebra, particularly projective geometry, a semilinear map between vector spaces V and W over a field K is a function that is a linear map "up to a twist", hence semi-linear, where "twist" means "field automorphism of K". Explicitly, it is a function T : V → W that is: additive with respect to vector addition: there exists a field automorphism θ of K such that , where is the image of the scalar under the automorphism. If such an automorphism exists and T is nonzero, it is unique, and T is called θ-semilinear.
In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of U(n) are complex n×n unitary matrices, and elements of the center are diagonal matrices equal to eiθ multiplied by the identity matrix.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
,
The arise of disagreement is an emergent phenomenon that can be observed within a growing social group and, beyond a certain threshold, can lead to group fragmentation. To better understand how disagreement emerges, we introduce an analytically tractable m ...
Our experimental study built on a tradition of quantitative urbanism, updating it to reflect recent developments in computer vision. We used cameras to track an area of Avenue Piccard in its current state, then intervened with temporary furniture such as o ...
The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...