Unsupervised Stereo Matching Using Confidential Correspondence Consistency
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
Self-supervised detection and segmentation of foreground objects aims for accuracy without annotated training data. However, existing approaches predominantly rely on restrictive assumptions on appearance and motion. For scenes with dynamic activities and ...
The problem of estimating a surface shape from its observed reflectance properties still remains a challenging task in computer vision. The presence of global illumination effects such as inter-reflections or cast shadows makes the task particularly diffic ...
Time series classification (TSC) is an important and challenging problem in machine learning. In this work, we tackle the problem of TSC by first applying a Bidirectional Encoder Representations from Transformers (BERT) model, and then applying a convoluti ...
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface s ...
In order to be globally deployed, autonomous cars must guarantee the safety of pedestrians. This is the reason why forecasting pedestrians' intentions sufficiently in advance is one of the most critical and challenging tasks for autonomous vehicles. This w ...
Leveraging on recent advances in deep convolutional neural networks (CNNs), single image deraining has been studied as a learning task, achieving an outstanding performance over traditional hand-designed approaches. Current CNNs based deraining approaches ...
First-quantized deep neural network techniques are developed for analyzing strongly coupled fermionic systems on the lattice. Using a Slater-Jastrow-inspired ansatz which exploits deep residual networks with convolutional residual blocks, we approximately ...