Optimization for Reinforcement Learning: From a single agent to cooperative agents
Related publications (101)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
One of the main goal of Artificial Intelligence is to develop models capable of providing valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks to design such models by learning from examples coming from this same envi ...
Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive method for studying white matter tracts of the brain. However, accurate microstructure estimation with fiber orientation distribution (FOD) using existing computational methods requires ...
The ability to forecast human motion, called ``human trajectory forecasting", is a critical requirement for mobility applications such as autonomous driving and robot navigation. Humans plan their path taking into account what might happen in the future. S ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
We study the average robustness notion in deep neural networks in (selected) wide and narrow, deep and shallow, as well as lazy and non-lazy training settings. We prove that in the under-parameterized setting, width has a negative effect while it improves ...
A plethora of real world problems consist of a number of agents that interact, learn, cooperate, coordinate, and compete with others in ever more complex environments. Examples include autonomous vehicles, robotic agents, intelligent infrastructure, IoT de ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
We consider model-based multi-agent reinforcement learning, where the environment transition model is unknown and can only be learned via expensive interactions with the environment. We propose H-MARL (Hallucinated Multi-Agent Reinforcement Learning), a no ...
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the ϵ-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that fa ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...