Publication

Disorder‐Induced Signal Filtering with Topological Metamaterials

Abstract

Disorder, ubiquitously present in realistic structures, is generally thought to disturb the performance of analog wave devices, as it often causes strong multiple scattering effects that largely arrest wave transportation. Contrary to this general view, here, it is shown that, in some wave systems with nontrivial topological character, strong randomness can be highly beneficial, acting as a powerful stimulator to enable desired analog filtering operations. This is achieved in a topological Anderson sonic crystal that, in the regime of dominating randomness, provides a well‐defined filtering response characterized by a Lorentzian spectral line‐shape. The theoretical and experimental results, serving as the first realization of topological Anderson insulator phase in acoustics, suggest the striking possibility of achieving specific, nonrandom analog filtering operations by adding randomness to clean structures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.