Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...
Springer2024
, , ,
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
Recent years have witnessed significant advance- ment in face recognition (FR) techniques, with their applications widely spread in people’s lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such syste ...
Self-tracking technologies open new doors to previously unimaginable scenarios. The diagnosis of diseases years in advance, or supporting the health of astronauts on missions to Mars are just some of many example applications. During the COVID-19 pandemic, ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
EPFL2021
, , ,
We propose a physics-informed neural network (PINN) as the forward model for tomographic reconstructions of biological samples. We demonstrate that by training this network with the Helmholtz equation as a physical loss, we can predict the scattered field ...