Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The transient electronic and molecular structure arising from photoinduced charge transfer in transition metal complexes is studied by X-ray powder diffraction with a 100 fs temporal and atomic spatial resolution. Crystals containing a dense array of Fe(II ...
Recent experimental advances in atomically thin transition metal dichalcogenide (TMD) metals have unveiled a range of interesting phenomena including the coexistence of charge-density-wave (CDW) order and superconductivity down to the monolayer limit. The ...
Atomically precise tailoring of graphene can enable unusual transport pathways and new nanometer-scale functional devices. Here we describe a recipe for the controlled production of highly regular "5-5-8" line defects in graphene by means of simultaneous e ...
Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (+/- or 0) ...
In quasi-two-dimensional electron systems of layered transition metal dichalcogenides (TMDs) there is still controversy about the nature of the transitions to charge-density wave (CDW) phases, i.e., whether they are described by a Peierls-type mechanism or ...
The majority of interactions in solids strongly depend on the interatomic distances. The application of pressure changes the lattice parameters and modifies the electronic and the phononic energy spectra of a material avoiding some of the undesirable effec ...
We have used scanning micro x-ray diffraction to characterize different phases in superconducting KxFe2-ySe2 as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (T-c similar to 32 K), phase separa ...
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls or ...
The transition-metal dichalcogenide 1T-TiSe2 is a quasi-two-dimensional layered material with a charge density wave (CDW) transition temperature of T-CDW approximate to 200 K. Self-doping effects for crystals grown at different temperatures introduce struc ...
We highlight the emergence of metallic states in two-dimensional transition-metal-dichalcogenide nanostructures nanoribbons, islands, and inversion domain boundaries as a widespread and universal phenomenon driven by the polar discontinuities occurring at ...