Countable setIn mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.
Integer latticeIn mathematics, the n-dimensional integer lattice (or cubic lattice), denoted \mathbb{Z}^n, is the lattice in the Euclidean space \mathbb{R}^n whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. \mathbb{Z}^n is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice. The automorphism group (or group of congruences) of the integer lattice consists of all permutations and sign changes of the coordinates, and is of order 2n n!.
Lattice (group)In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Algorithmically random sequenceIntuitively, an algorithmically random sequence (or random sequence) is a sequence of binary digits that appears random to any algorithm running on a (prefix-free or not) universal Turing machine. The notion can be applied analogously to sequences on any finite alphabet (e.g. decimal digits). Random sequences are key objects of study in algorithmic information theory. As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an oracle machine, there are different notions of randomness.
Axiom of countable choiceThe axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N. The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC).
Infinite monkey theoremThe infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, including the complete works of William Shakespeare. In fact, the monkey would almost surely type every possible finite text an infinite number of times. The theorem can be generalized to state that any sequence of events which has a non-zero probability of happening will almost certainly eventually occur, given unlimited time.
Random variableA random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as it is not actually random nor a variable, but rather it is a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads and tails ) in a sample space (e.g., the set ) to a measurable space (e.g., in which 1 corresponding to and −1 corresponding to ), often to the real numbers.
QuestionA question is an utterance which serves as a request for information. Questions are sometimes distinguished from interrogatives, which are the grammatical forms typically used to express them. Rhetorical questions, for instance, are interrogative in form but may not be considered bona fide questions, as they are not expected to be answered. Questions come in a number of varieties. Polar questions are those such as the English example "Is this a polar question?", which can be answered with "yes" or "no".
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
Lévy flightA Lévy flight is a random walk in which the step-lengths have a stable distribution, a probability distribution that is heavy-tailed. When defined as a walk in a space of dimension greater than one, the steps made are in isotropic random directions. Later researchers have extended the use of the term "Lévy flight" to also include cases where the random walk takes place on a discrete grid rather than on a continuous space. The term "Lévy flight" was coined by Benoît Mandelbrot, who used this for one specific definition of the distribution of step sizes.