The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The calcium silicate hydrates (C-S-H) are without doubt one of the most important hydration products in a hardened cement paste. Giving the complexity of the microstructure that forms by hydration of ordinary Portland cement (OPC) and the more recently use ...
The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...
Calcium silicate hydrate (C-S-H) is the main hydration product in Portland and blended cements, and greatly affects durability and mechanical properties of the hydrated cement. In the presence of Al-rich supplementary cementitious materials (SCMs), C-(A-)S ...
AbstractCalcium-Silicate-Hydrate (C-S-H) has been studied extensively over the last few decades to gain understanding toward the underlying mechanism of different stages during cement hydration. The variable stoichiometry and nanocrystallinity of C-S-H mak ...
Depending on the environmental conditions, concrete materials can come into contact with sulfate ions which are widely present in rivers, underground water, sewers, seawater and soil. Sulfates can react with the cement paste in concrete and cause damage wh ...
Cement production accounts for approximately 8% of man-made CO2 emissions. Lowering these CO2 emissions is currently one of the most important and urgent research topics within the cement community. To reduce these emissions, the Portland cement (PC) is pa ...
Partial replacement of clinker with supplementary cementitious materials (SCMs) is an effective approach to reduce CO2 emissions related to cement production. However, there is a maximum substitution level with SCMs beyond which strength decreases. The und ...
To reduce the CO2 footprint of construction materials, concrete producers blend their cement with Supplementary Cementitious Materials (SCMs). SCMs such as fly ash or blast furnace slag are mostly the byproducts of other industries. And while SCMs are chos ...
This paper presents a comparison of methods to quantify the chloride binding capacity for cementitious materials composed of Ordinary Portland Cement (OPC) and Limestone (LS, 0 to 55% replacement). Physical and chemical chloride bindings were investigated ...
Production of blended cements in which Portland cement is combined with supplementary cementitious materials (SCM) is an effective strategy for reducing the CO2 emissions during cement manufacturing and achieving sustainable concrete production. However, t ...