Publication

Schwinger production of scalar particles during and after inflation from the first principles

Oleksandr Sobol
2020
Journal paper
Abstract

By using the first-principles approach, we derive a system of three quantum kinetic equations governing the production and evolution of charged scalar particles by an electric field in an expanding universe. Analyzing the ultraviolet asymptotic behavior of the kinetic functions, we found the divergent parts of the electric current and the energy-momentum tensor of the produced particles and determined the corresponding counterterms. The renormalized system of equations is used to study the generation of electromagnetic fields during and after inflation in the kinetic coupling model L-EM = -(1/4)f(2)(phi)F-mu nu F-mu nu with the Ratra coupling function f = exp(beta phi/M-p). It is found that the electric current of created particles is retarded with respect to the electric field. This leads to an oscillatory behavior of both quantities in agreement with the results obtained previously in phenomenological kinetic and hydrodynamical approaches.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.