Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Broadband electrostatic force microscopy can be used to non-destructively image n-type and p-type dopant layers in silicon devices with a lateral resolution of 10 nm and a vertical resolution of 0.5 nm. Integrated circuits and certain silicon-based quantum devices require the precise positioning of dopant nanostructures, and hydrogen resist lithography can be used to fabricate such structures at the atomic-scale limit. However, there is no single technique capable of measuring the three-dimensional location and electrical characteristics of these dopant nanostructures, as well as the charge dynamics of carriers and trapped charges in their vicinity. Here, we show that broadband electrostatic force microscopy can be used for non-destructive carrier profiling of atomically thin n-type (phosphorus) and p-type (boron) dopant layers in silicon, and their resulting p-n junctions. The probe has a lateral resolution of 10 nm and a vertical resolution of 0.5 nm, and detects the capacitive signature of subsurface charges in a broad 1 kHz to 10 GHz frequency range. This allows the bias-dependent charge dynamics of free electrons in conducting channels and trapped charges in oxide-silicon interfaces to be investigated.
,
Tobias Kippenberg, Mikhail Churaev, Xinru Ji, Zihan Li, Alisa Davydova, Junyin Zhang, Yang Chen, Xi Wang, Kai Huang
, , ,