Publication

Fourier Sampling in Signal Processing and Numerical Linear Algebra

Related concepts (39)
Honours degree
Honours degree has various meanings in the context of different degrees and education systems. Most commonly it refers to a variant of the undergraduate bachelor's degree containing a larger volume of material or a higher standard of study, or both, rather than an "ordinary", "general" or "pass" bachelor's degree. Honours degrees are sometimes indicated by "Hons" after the degree abbreviation, with various punctuation according to local custom, e.g. "BA (Hons)", "B.A., Hons", etc.
Quantum Fourier transform
In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.
Boson sampling
Boson sampling is a restricted model of non-universal quantum computation introduced by Scott Aaronson and Alex Arkhipov after the original work of Lidror Troyansky and Naftali Tishby, that explored possible usage of boson scattering to evaluate expectation values of permanents of matrices. The model consists of sampling from the probability distribution of identical bosons scattered by a linear interferometer.
Polynomial kernel
In machine learning, the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original variables, allowing learning of non-linear models. Intuitively, the polynomial kernel looks not only at the given features of input samples to determine their similarity, but also combinations of these. In the context of regression analysis, such combinations are known as interaction features.
Basic Linear Algebra Subprograms
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. They are the de facto standard low-level routines for linear algebra libraries; the routines have bindings for both C ("CBLAS interface") and Fortran ("BLAS interface").
Minimal polynomial (linear algebra)
In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA. The following three statements are equivalent: λ is a root of μA, λ is a root of the characteristic polynomial χA of A, λ is an eigenvalue of matrix A. The multiplicity of a root λ of μA is the largest power m such that ker((A − λIn)m) strictly contains ker((A − λIn)m−1).
Mehler kernel
The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator. defined a function and showed, in modernized notation, that it can be expanded in terms of Hermite polynomials H(.) based on weight function exp(−x2) as This result is useful, in modified form, in quantum physics, probability theory, and harmonic analysis. In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel.
Circulant matrix
In linear algebra, a circulant matrix is a square matrix in which all row vectors are composed of the same elements and each row vector is rotated one element to the right relative to the preceding row vector. It is a particular kind of Toeplitz matrix. In numerical analysis, circulant matrices are important because they are diagonalized by a discrete Fourier transform, and hence linear equations that contain them may be quickly solved using a fast Fourier transform.
Canonical basis
In mathematics, a canonical basis is a basis of an algebraic structure that is canonical in a sense that depends on the precise context: In a coordinate space, and more generally in a free module, it refers to the standard basis defined by the Kronecker delta. In a polynomial ring, it refers to its standard basis given by the monomials, . For finite extension fields, it means the polynomial basis. In linear algebra, it refers to a set of n linearly independent generalized eigenvectors of an n×n matrix , if the set is composed entirely of Jordan chains.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.