DerivativeIn mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Second derivativeIn calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation: where a is acceleration, v is velocity, t is time, x is position, and d is the instantaneous "delta" or change.
Derivative testIn calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function. The usefulness of derivatives to find extrema is proved mathematically by Fermat's theorem of stationary points. The first-derivative test examines a function's monotonic properties (where the function is increasing or decreasing), focusing on a particular point in its domain.
Third derivativeIn calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function can be denoted by Other notations can be used, but the above are the most common. Let . Then and . Therefore, the third derivative of f is, in this case, or, using Leibniz notation, Now for a more general definition. Let f be any function of x such that f ′′ is differentiable.
Generalizations of the derivativeIn mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. The Fréchet derivative defines the derivative for general normed vector spaces . Briefly, a function , an open subset of , is called Fréchet differentiable at if there exists a bounded linear operator such that Functions are defined as being differentiable in some open neighbourhood of , rather than at individual points, as not doing so tends to lead to many pathological counterexamples.
Logarithmic derivativeIn mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f. When f is a function f(x) of a real variable x, and takes real, strictly positive values, this is equal to the derivative of ln(f), or the natural logarithm of f.
Support (mathematics)In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Suppose that is a real-valued function whose domain is an arbitrary set The of written is the set of points in where is non-zero: The support of is the smallest subset of with the property that is zero on the subset's complement.
Partial derivativeIn mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Partial derivatives are used in vector calculus and differential geometry. The partial derivative of a function with respect to the variable is variously denoted by It can be thought of as the rate of change of the function in the -direction.
Bump functionIn mathematics, a bump function (also called a test function) is a function on a Euclidean space which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain forms a vector space, denoted or The dual space of this space endowed with a suitable topology is the space of distributions. The function given by is an example of a bump function in one dimension.
Dirac delta functionIn mathematical physics, the Dirac delta distribution (δ distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., ) to its value at zero of its domain (), or as the weak limit of a sequence of bump functions (e.g.