In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Partial derivatives are used in vector calculus and differential geometry.
The partial derivative of a function with respect to the variable is variously denoted by
It can be thought of as the rate of change of the function in the -direction.
Sometimes, for , the partial derivative of with respect to is denoted as Since a partial derivative generally has the same arguments as the original function, its functional dependence is sometimes explicitly signified by the notation, such as in:
The symbol used to denote partial derivatives is ∂. One of the first known uses of this symbol in mathematics is by Marquis de Condorcet from 1770, who used it for partial differences. The modern partial derivative notation was created by Adrien-Marie Legendre (1786), although he later abandoned it; Carl Gustav Jacob Jacobi reintroduced the symbol in 1841.
Like ordinary derivatives, the partial derivative is defined as a limit. Let U be an open subset of and a function. The partial derivative of f at the point with respect to the i-th variable xi is defined as
Even if all partial derivatives exist at a given point a, the function need not be continuous there. However, if all partial derivatives exist in a neighborhood of a and are continuous there, then f is totally differentiable in that neighborhood and the total derivative is continuous. In this case, it is said that f is a C1 function. This can be used to generalize for vector valued functions, , by carefully using a componentwise argument.
The partial derivative can be seen as another function defined on U and can again be partially differentiated. If the direction of derivative is repeated, it is called a mixed partial derivative.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
In vector calculus, the Jacobian matrix (dʒəˈkəʊbiən, dʒᵻ-,_jᵻ-) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature.
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
The aim of this course is to expose EPFL bachelor students to some of the main areas in financial economics. The course will be organized around six themes. Students will obtain both practical insight
Explores the process of partial differentiation through various examples in two dimensions, emphasizing the importance of treating each variable separately.
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
In this note, we prove that if a subharmonic function Delta u >= 0 has pure second derivatives partial derivative(ii)u that are signed measures, then their negative part (partial derivative(ii)u)- belongs to L-1 (in particular, it is not singular). We then ...
Providence2023
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown-Resnick and Smith fields, are very popula ...