An adaptive algorithm for the transport equation with time dependent velocity
Related publications (56)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A stabilized semidiscrete finite element discretization of the transient transport equation is studied in the framework of anisotropic meshes. A priori and a posteriori error estimates are derived, the involved constants being independent of the mesh aspec ...
In this work we deal with the numerical solution of the fluid-structure interaction problem arising in the haemodynamic environment. In particular, we consider BDF and Newmark time discretization schemes, and we study different methods for the treatment of ...
In this paper, we introduce the hierarchical B-spline complex of discrete differential forms for arbitrary spatial dimension. This complex may be applied to the adaptive isogeometric solution of problems arising in fluid mechanics. We derive a sufficient a ...
In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discr ...
We study a class of models at the interface between statistics and numerical analysis. Specifically, we consider nonparametric regression models for the estimation of spatial fields from pointwise and noisy observations, which account for problem-specific ...
A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of the micro problems needed to estimate the macroscopic ...
The goal of this project is to numerically solve the Navier-Stokes equations by using different numerical methods with particular emphasis on solving the problem of the flow past a square cylinder. In particular, we use the finite element method based on P ...
In this paper we consider the numerical solution of the three-dimensional fluid–structure interaction problem in haemodynamics, in the case of real geometries, physiological data and finite elasticity vessel deformations. We study some new inexact schemes, ...
We propose a multiscale method based on a finite element heterogeneous multiscale method (in space) and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with multiple scales due to spatial heterogeneities varying rapid ...
We consider a method to efficiently evaluate in a real-time context an output based on the numerical solution of a partial differential equation depending on a large number of parameters. We state a result allowing to improve the computational performance ...