Correctness (computer science)In theoretical computer science, an algorithm is correct with respect to a specification if it behaves as specified. Best explored is functional correctness, which refers to the input-output behavior of the algorithm (i.e., for each input it produces an output satisfying the specification). Within the latter notion, partial correctness, requiring that if an answer is returned it will be correct, is distinguished from total correctness, which additionally requires that an answer is eventually returned, i.e.
Reliable byte streamA reliable byte stream is a common service paradigm in computer networking; it refers to a byte stream in which the bytes which emerge from the communication channel at the recipient are exactly the same, and in exactly the same order, as they were when the sender inserted them into the channel. The classic example of a reliable byte stream communication protocol is the Transmission Control Protocol, one of the major building blocks of the Internet.
JythonJython is an implementation of the Python programming language designed to run on the Java platform. The implementation was formerly known as JPython until 1999. Jython programs can import and use any Java class. Except for some standard modules, Jython programs use Java classes instead of Python modules. Jython includes almost all of the modules in the standard Python programming language distribution, lacking only some of the modules implemented originally in C. For example, a user interface in Jython could be written with Swing, AWT or SWT.
HaskellHaskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Z notationThe Z notation ˈzɛd is a formal specification language used for describing and modelling computing systems. It is targeted at the clear specification of computer programs and computer-based systems in general. In 1974, Jean-Raymond Abrial published "Data Semantics". He used a notation that would later be taught in the University of Grenoble until the end of the 1980s. While at EDF (Électricité de France), working with Bertrand Meyer, Abrial also worked on developing Z. The Z notation is used in the 1980 book Méthodes de programmation.
CoinductionIn computer science, coinduction is a technique for defining and proving properties of systems of concurrent interacting objects. Coinduction is the mathematical to structural induction. Coinductively defined types are known as codata and are typically infinite data structures, such as streams. As a definition or specification, coinduction describes how an object may be "observed", "broken down" or "destructed" into simpler objects. As a proof technique, it may be used to show that an equation is satisfied by all possible implementations of such a specification.
Idris (programming language)Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
Turing completenessIn computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine (devised by English mathematician and computer scientist Alan Turing). This means that this system is able to recognize or decide other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set.
OS/2OS/2 (Operating System/2) is a series of computer operating systems, initially created by Microsoft and IBM under the leadership of IBM software designer Ed Iacobucci. As a result of a feud between the two companies over how to position OS/2 relative to Microsoft's new Windows 3.1 operating environment, the two companies severed the relationship in 1992 and OS/2 development fell to IBM exclusively. The name stands for "Operating System/2", because it was introduced as part of the same generation change release as IBM's "Personal System/2 (PS/2)" line of second-generation personal computers.
Functional verificationFunctional verification is the task of verifying that the logic design conforms to specification. Functional verification attempts to answer the question "Does this proposed design do what is intended?" This is complex and takes the majority of time and effort (up to 70% of design and development time) in most large electronic system design projects. Functional verification is a part of more encompassing design verification, which, besides functional verification, considers non-functional aspects like timing, layout and power.