Principal Component Analysis By Optimization Of Symmetric Functions Has No Spurious Local Optima
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...
Convolutional neural networks (CNN) are known to learn an image representation that captures concepts relevant to the task, but do so in an implicit way that hampers model interpretability. However, one could argue that such a representation is hidden in t ...
LNCS2020
This paper introduces Memory-limited Online Subspace Estimation Scheme (MOSES) for both estimating the principal components of streaming data and reducing its dimension. More specifically, in various applications such as sensor networks, the data vectors a ...
IEEE COMPUTER SOC2020
We prove an identity relating the permanent of a rank 2 matrix and the determinants of its Hadamard powers. When viewed in the right way, the resulting formula looks strikingly similar to an identity of Carlitz and Levine, suggesting the possibility that t ...
TAYLOR & FRANCIS INC2022
Here we present an electroencephalographic (EEG) collection of 71-channel datasets recorded from 14 subjects (7 males, 7 females, aged 20–40 years) while performing a visual working memory task with a T set of 150 Independent Component Analysis (ICA) decom ...
Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dime ...
Starting from a strong Lattice-Free Maximum Mutual Information (LF-MMI) baseline system, we explore different autoencoder configurations to enhance Mel-Frequency Cepstral Coefficients (MFCC) features. Autoencoders are expected to generate new MFCC features ...
We have analyzed structural motifs in the Deem database of hypothetical zeolites to investigate whether the structural diversity found in this database can be well-represented by classical descriptors, such as distances, angles, and ring sizes, or whether ...
Background: For the functional control of prosthetic hand, it is insufficient to obtain only the motion pattern information. As far as practicality is concerned, the control of the prosthetic hand force is indispensable. The application value of prosthetic ...
Mining useful clusters from high dimensional data has received significant attention of the computer vision and pattern recognition community in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome the c ...