Publication

Connecting multiple spatial scales to decode the population activity of grid cells

Alexander Mathis
2015
Journal paper
Abstract

Mammalian grid cells fire when an animal crosses the points of an imaginary hexagonal grid tessellating the environment. We show how animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial scales, even though neural activity is intrinsically stochastic. This theory of dead reckoning explains why grid cells are organized into discrete modules within which all cells have the same lattice scale and orientation. The lattice scale changes from module to module and should form a geometric progression with a scale ratio of around 3/2 to minimize the risk of making large-scale errors in spatial localization. Such errors should also occur if intermediate-scale modules are silenced, whereas knocking out the module at the smallest scale will only affect spatial precision. For goal-directed navigation, the allocentric grid cell representation can be readily transformed into the egocentric goal coordinates needed for planning movements. The goal location is set by nonlinear gain fields that act on goal vector cells. This theory predicts neural and behavioral correlates of grid cell readout that transcend the known link between grid cells of the medial entorhinal cortex and place cells of the hippocampus.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Place cell
A place cell is a kind of pyramidal neuron in the hippocampus that becomes active when an animal enters a particular place in its environment, which is known as the place field. Place cells are thought to act collectively as a cognitive representation of a specific location in space, known as a cognitive map. Place cells work with other types of neurons in the hippocampus and surrounding regions to perform this kind of spatial processing. They have been found in a variety of animals, including rodents, bats, monkeys and humans.
Grid cell
A grid cell is a type of neuron within the entorhinal cortex that fires at regular intervals as an animal navigates an open area, allowing it to understand its position in space by storing and integrating information about location, distance, and direction. Grid cells have been found in many animals, including rats, mice, bats, monkeys, and humans. Grid cells were discovered in 2005 by Edvard Moser, May-Britt Moser, and their students Torkel Hafting, Marianne Fyhn, and Sturla Molden at the Centre for the Biology of Memory (CBM) in Norway.
Spatial cognition
Spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines (such as cognitive psychology, neuroscience, artificial intelligence, geographic information science, cartography, etc.
Show more
Related publications (38)

Task-driven neural network models predict neural dynamics of proprioception: Neural network model weights

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
EPFL Infoscience2024

The neural correlates of topographical disorientation-a lesion analysis study

Olaf Blanke, Lukas Heydrich, Eva Blondiaux

Topographical disorientation refers to the selective inability to orient oneself in familiar surroundings. However, to date its neural correlates remain poorly understood. Here we use quantitative lesion analysis and a lesion network mapping approach in or ...
Hoboken2024

Task-driven neural network models predict neural dynamics of proprioception

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
2023
Show more
Related MOOCs (27)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.