Query-driven Repair of Functional Dependency Violations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This dataset supports the publication 'Elastocapillary menisci mediate interaction of neighboring structures at the surface of a compliant solid' by Lebo Molefe and John M. Kolinski, Physical Review E, (2023). The data are surface profiles of textured surf ...
Advances in data acquisition technologies and supercomputing for large-scale simulations have led to an exponential growth in the volume of spatial data. This growth is accompanied by an increase in data complexity, such as spatial density, but also by mor ...
This text, accompanied by a ‘gospel’ that I made by montaging the US-recorded captions, is an attempt for re-narrating Marshall Plan’s discourse on the working class, aka the so-called ‘free labor’ of the US against the ‘communist labor’ of the “Soviet thr ...
Extracting value and insights from increasingly heterogeneous data sources involves multiple systems combining and consuming the data. With multi-modal and context-rich data such as strings, text, videos, or images, the problem of standardizing the data mo ...
In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption ...
Core to many scientific and analytics applications are spatial data capturing the position or shape of objects in space, and time series recording the values of a process over time. Effective analysis of such data requires a shift from confirmatory pipelin ...
This paper introduces an approach to supporting high-dimensional data cubes at interactive query speeds and moderate storage cost. The approach is based on binary(-domain) data cubes that are judiciously partially materialized; the missing information can ...
This paper introduces an approach to supporting high-dimensional data cubes at interactive query speeds and moderate storage cost. The approach is based on binary(-domain) data cubes that are judiciously partially materialized; the missing information can ...
Data cleaning has become an indispensable part of data analysis due to the increasing amount of dirty data. Data scientists spend most of their time preparing dirty data before it can be used for data analysis. Existing solutions that attempt to automate t ...
Data cleaning is a time-consuming process that depends on the data analysis that users perform. Existing solutions treat data cleaning as a separate offline process that takes place before analysis begins. Applying data cleaning before analysis assumes a p ...