Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
Related publications (97)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quantum computing has made significant progress in recent years, with Google and IBM releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved quantum supremacy with its 54-qubit device, and IBM has announced the release of ...
Frequency-bin qubits get the best of time-bin and dual-rail encodings, but require external modulators and pulse shapers to build arbitrary states. Here, instead, the authors work directly on-chip by controlling the interference of biphoton amplitudes gene ...
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems. In this context, the spectral purity of individual frequency bins will be critical for realizing quantum networki ...
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...
A new paradigm for data science has emerged, with quantum data, quantum models, and quantum computational devices. This field, called quantum machine learning (QML), aims to achieve a speedup over traditional machine learning for data analysis. However, it ...
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal cross talk imposes constraints on the frequency separation between neighboring qubits. The frequency uncertainty of transmon qubits arising fro ...
The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcor ...
Lanthanide atoms on surfaces are an exceptional platform for atomic-scale magnetic information storage. However, their potential as qubits remains unexplored due to the limited number of experimental setups that can coherently drive the spins of single ada ...
Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution ...
Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the lo-cality of the operators comes at the ex-pense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the l ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2023