Publication

Estimating an extreme Bayesian network via scalings

Mario Krali
2021
Journal paper
Abstract

A recursive max-linear vector models causal dependence between its components by expressing each node variable as a max-linear function of its parental nodes in a directed acyclic graph and some exogenous innovation. Motivated by extreme value theory, innovations are assumed to have regularly varying distribution tails. We propose a scaling technique in order to determine a causal order of the node variables. All dependence parameters are then estimated from the estimated scalings. Furthermore, we prove asymptotic normality of the estimated scalings and dependence parameters based on asymptotic normality of the empirical spectral measure. Finally, we apply our structure learning and estimation algorithm to financial data and food dietary interview data. (C) 2020 Elsevier Inc. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.