Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Recent advances in virtual reality and robotic technologies have allowed researchers to explore the mechanisms underlying bodily aspects of self-consciousness which are largely attributed to the multisensory and sensorimotor processing of bodily signals (bodily self-consciousness, BSC). One key contribution to BSC, that is currently poorly addressed due to the lack of a wearable solution, concerns realistic collision sensations on the torso. Here, we introduce and validate a proof-of-concept prototype of torso-worn force display, the Cogno-vest, that provides mechanical touch on the user s back in a sensorimotor perception experiment. In a first empirical study, we characterized human finger poking (N=28). In order to match these poking characteristics and meet the wearability criteria, we used bi-directional, push-pull solenoids as a force actuator in the Cogno-vest. Subsequently, and based on an iterative design procedure, a body-conforming, unisex, torso-worn force display was prototyped. Finally, we conducted a behavioral study that investigated BSC in 25 healthy participants by introducing conflicting sensorimotor signals between their hand and torso (back). Using the final reiteration of the Cogno-vest we successfully replicated previous findings on illusory states of BSC, characterized by presence hallucinations (PH) and passivity symptoms, and achieved higher illusion ratings compared to static conditions used in prior studies.
Olaf Blanke, Fosco Bernasconi, Melissa Faggella, Nathan Quentin Faivre, Pavo Orepic
Olaf Blanke, Nathan Quentin Faivre, Oliver Alan Kannape, Pavo Orepic