**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Modurec: Recommender Systems with Feature and Time Modulation

Abstract

Current state of the art algorithms for recommender systems are mainly based on collaborative filtering, which exploits user ratings to discover latent factors in the data. These algorithms unfortunately do not make effective use of other features, which can help solve two well identified problems of collaborative filtering: cold start (not enough data is available for new users or products) and concept shift (the distribution of ratings changes over time). To address these problems, we propose Modurec: an autoencoder-based method that combines all available information using the feature-wise modulation mechanism, which has demonstrated its effectiveness in several fields. While time information helps mitigate the effects of concept shift, the combination of user and item features improve prediction performance when little data is available. We show on Movielens datasets that these modifications produce state-of-the-art results in most evaluated settings compared with standard autoencoder-based methods and other collaborative filtering approaches.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (15)

Modulation

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation sign

Time

Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component

Recommender system

A recommender system, or a recommendation system (sometimes replacing 'system' with a synonym such as platform or engine), is a subclass of information filtering system that provide suggestions for

Related publications (34)

Loading

Loading

Loading

In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of all this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Three important questions one can ask when constructing such models are: - What is the structure of the data? This is especially relevant for high-dimensional data which cannot be visualized anymore. - Which features are most characteristic? -How to predict whether a pattern belongs to one class or to another? This thesis investigates these three questions by trying to construct complex models from simple ones. The decomposition into simpler parts can also be found in the methods used for estimating the parameter values of these models. The algorithms for the simple models constitute the core of the algorithms for the complex ones. The above questions are addressed in three stages: Unsupervised learning: This part deals with the problem of probability density estimation with the goal of finding a good probabilistic representation of the data. One of the most popular density estimation methods is the Gaussian mixture model (GMM). A promising alternative to GMMs are the recently proposed mixtures of latent variable models. Examples of the latter are principal component analysis (PCA) and factor analysis. The advantage of these models is that they are capable of representing the covariance structure with less parameters by choosing the dimension of a subspace in a suitable way. An empirical evaluation on a large number of data sets shows that mixtures of latent variable models almost always outperform GMMs. To avoid having to choose a value for the dimension of the subspace by a computationally expensive search technique such as cross-validation, a Bayesian treatment of mixtures of latent variable models is proposed. This framework makes it possible to determine the appropriate dimension during training and experiments illustrate its viability. Feature extraction: PCA is also (and foremost) a classic method for feature extraction. However, PCA is limited to linear feature extraction by a projection onto a subspace. Kernel PCA is a recent method which allows non-linear feature extraction. Applying kernel PCA to a data set with N patterns requires finding the eigenvectors of an N*N matrix. An Expectation-Maximization (EM) algorithm for PCA which does not need to store this matrix is adapted to kernel PCA and applied to large data sets with more than 10,000 examples. The experiments confirm that this approach is feasible and that the extracted features lead to good performance when used as pre-processed data for a linear classifier. A new on-line variant of the EM algorithm for PCA is presented and shown to speed up the learning process. Supervised learning: This part illustrates two ways of constructing complex models from simple ones for classification problems. The first approach is inspired by unsupervised mixture models and extends them to supervised learning. The resulting model, called a mixture of experts, tries to decompose a complex problem into subproblems treated by several simpler models. The division of the data space is effectuated by an input-dependent gating network. After a review of the model and existing training methods, different possible gating networks are proposed and compared. Unsupervised mixture models are one of the evaluated options. The experiments show that a standard mixture of experts with a neural network gate gives the best results. The second approach is a constructive algorithm called boosting which creates a committee of simple models by emphasizing patterns which have been frequently misclassified by the preceding classifiers. A new model has been developed which lies between a mixture of experts and a boosted committee. It adds an input-dependent combiner (like a gating network) to standard boosting. This has the advantage that with a considerably smaller committee results are obtained which are comparable to those of boosting. Finally, some of the investigated models have been evaluated on two problems of machine vision. The results confirm the potential of mixtures of latent variable models which lead to good performance when incorporated in a Bayes classifier.

In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of all this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Three important questions one can ask when constructing such models are: - What is the structure of the data? This is especially relevant for high-dimensional data which cannot be visualized anymore. - Which features are most characteristic? -How to predict whether a pattern belongs to one class or to another? This thesis investigates these three questions by trying to construct complex models from simple ones. The decomposition into simpler parts can also be found in the methods used for estimating the parameter values of these models. The algorithms for the simple models constitute the core of the algorithms for the complex ones. The above questions are addressed in three stages: Unsupervised learning: This part deals with the problem of probability density estimation with the goal of finding a good probabilistic representation of the data. One of the most popular density estimation methods is the Gaussian mixture model (GMM). A promising alternative to GMMs are the recently proposed mixtures of latent variable models. Examples of the latter are principal component analysis (PCA) and factor analysis. The advantage of these models is that they are capable of representing the covariance structure with less parameters by choosing the dimension of a subspace in a suitable way. An empirical evaluation on a large number of data sets shows that mixtures of latent variable models almost always outperform GMMs. To avoid having to choose a value for the dimension of the subspace by a computationally expensive search technique such as cross-validation, a Bayesian treatment of mixtures of latent variable models is proposed. This framework makes it possible to determine the appropriate dimension during training and experiments illustrate its viability. Feature extraction: PCA is also (and foremost) a classic method for feature extraction. However, PCA is limited to linear feature extraction by a projection onto a subspace. Kernel PCA is a recent method which allows non-linear feature extraction. Applying kernel PCA to a data set with N patterns requires finding the eigenvectors of an N*N matrix. An Expectation-Maximization (EM) algorithm for PCA which does not need to store this matrix is adapted to kernel PCA and applied to large data sets with more than 10,000 examples. The experiments confirm that this approach is feasible and that the extracted features lead to good performance when used as pre-processed data for a linear classifier. A new on-line variant of the EM algorithm for PCA is presented and shown to speed up the learning process. Supervised learning: This part illustrates two ways of constructing complex models from simple ones for classification problems. The first approach is inspired by unsupervised mixture models and extends them to supervised learning. The resulting model, called a mixture of experts, tries to decompose a complex problem into subproblems treated by several simpler models. The division of the data space is effectuated by an input-dependent gating network. After a review of the model and existing training methods, different possible gating networks are proposed and compared. Unsupervised mixture models are one of the evaluated options. The experiments show that a standard mixture of experts with a neural network gate gives the best results. The second approach is a constructive algorithm called boosting which creates a committee of simple models by emphasizing patterns which have been frequently misclassified by the preceding classifiers. A new model has been developed which lies between a mixture of experts and a boosted committee. It adds an input-dependent combiner (like a gating network) to standard boosting. This has the advantage that with a considerably smaller committee results are obtained which are comparable to those of boosting. Finally, some of the investigated models have been evaluated on two problems of machine vision. The results confirm the potential of mixtures of latent variable models which lead to good performance when incorporated in a Bayes classifier.

Market forces are continuously driving public and private organisations towards higher productivity, shorter process and production times, and fewer labour hours. To cope with these changes, organisations are adopting new organisational models of coordination and cooperation that increase their flexibility, consistency, efficiency, productivity and profit margins. In this thesis an organisational model of coordination and cooperation is examined using a real life example; the technical integration of a distributed large-scale project of an international physics collaboration. The distributed resource constraint project scheduling problem is modelled and solved with the methods of distributed constraint satisfaction. A distributed local search method, the distributed breakout algorithm (DisBO), is used as the basis for the coordination scheme. The efficiency of the local search method is improved by extending it with an incremental problem solving scheme with variable ordering. The scheme is implemented as central algorithm, incremental breakout algorithm (IncBO), and as distributed algorithm, distributed incremental breakout algorithm (DisIncBO). In both cases, strong performance gains are observed for solving underconstrained problems. Distributed local search algorithms are incomplete and lack a termination guarantee. When problems contain hard or unsolvable subproblems and are tightly or overconstrained, local search falls into infinite cycles without explanation. A scheme is developed that identifies hard or unsolvable subproblems and orders these to size. This scheme is based on the constraint weight information generated by the breakout algorithm during search. This information, combined with the graph structure, is used to derive a fail first variable order. Empirical results show that the derived variable order is 'perfect'. When it guides simple backtracking, exceptionally hard problems do not occur, and, when problems are unsolvable, the fail depth is always the shortest. Two hybrid algorithms, BOBT and BOBT-SUSP are developed. When the problem is unsolvable, BOBT returns the minimal subproblem within the search scope and BOBT-SUSP returns the smallest unsolvable subproblem using a powerful weight sum constraint. A distributed hybrid algorithm (DisBOBT) is developed that combines DisBO with DisBT. The distributed hybrid algorithm first attempts to solve the problem with DisBO. If no solution is available after a bounded number of breakouts, DisBO is terminated, and DisBT solves the problem. DisBT is guided by a distributed variable order that is derived from the constraint weight information and the graph structure. The variable order is incrementally established, every time the partial solution needs to be extended, the next variable within the order is identified. Empirical results show strong performance gains, especially when problems are overconstrained and contain small unsolvable subproblems.