**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Reduction techniques for PDEs built upon Reduced Basis and Domain Decomposition Methods with applications to hemodynamics

Abstract

This thesis focuses on the development and validation of a reduced order technique for cardiovascular simulations. The method is based on the combined use of the Reduced Basis method and a Domain Decomposition approach and can be seen as a particular implementation of the Reduced Basis Element method. Our contributions include the application to the unsteady three-dimensional Navier--Stokes equations, the introduction of a reduced coupling between subdomains, and the reconstruction of arteries with deformed elementary building blocks. The technique is divided into two main stages: the offline and the online phases. In the offline phase, we define a library of reference building blocks (e.g., tubes and bifurcations) and associate with each of these a set of Reduced Basis functions for velocity and pressure. The set of Reduced Basis functions is obtained by Proper Orthogonal Decomposition of a large number of flow solutions called snapshots; this step is expensive in terms of computational time. In the online phase, the artery of interest is geometrically approximated as a composition of subdomains, which are obtained from the parametrized deformation of the aforementioned building blocks. The local solution in each subdomain is then found as a linear combination of the Reduced Basis functions defined in the corresponding building block. The strategy to couple the local solutions is of utmost importance. In this thesis, we devise a nonconforming method for the coupling of Partial Differential Equations that takes advantage of the definition of a small number of Lagrange multiplier basis functions on the interfaces. We show that this strategy allows us to preserve the h-convergence properties of the discretization method of choice for the primal variable even when a small number of Lagrange multiplier basis functions is employed. Moreover, we test the flexibility of the approach in scenarios in which different discretization algorithms are employed in the subdomains, and we also use it in a fluid-structure interaction benchmark. The introduction of the Lagrange multipliers, however, is associated with stability problems deriving from the saddle-point structure of the global system. In our Reduced Order Model, the stability is recovered by means of supremizers enrichment.

In our numerical simulations, we specifically focus on the effects of the Reduced Basis and geometrical approximations on the quality of the results. We show that the Reduced Order Model performs similarly to the corresponding high-fidelity one in terms of accuracy. Compared to other popular models for cardiovascular simulations (namely 1D models), it also allows us to compute a local reconstruction of the Wall-Shear Stress on the vessel wall. The speedup with respect to the Finite Element method is substantial (at least one order of magnitude), although the current implementation presents bottlenecks that are addressed in depth throughout the thesis.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (12)

Related publications (4)

Finite element method

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).

Direct numerical simulation

A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved. All the spatial scales of the turbulence must be resolved in the computational mesh, from the smallest dissipative scales (Kolmogorov microscales), up to the integral scale , associated with the motions containing most of the kinetic energy.

Number

A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number.

Related MOOCs (9)

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

MATLAB and Octave for Beginners

Learn MATLAB and Octave and start experimenting with matrix manipulations, data visualizations, functions and mathematical computations.

Metallic aluminium plays a key role in our modern economy. Primary
metallic aluminium is produced by the transformation of aluminium
oxide using the Hall-Héroult industrial process. This process, whic

Simone Deparis, Luca Pegolotti, Antonio Iubatti

This work focuses on the development of a non-conforming method for the coupling of PDEs based on weakly imposed transmission conditions: the continuity of the global solution is enforced by a finite

2019We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment b