**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Radius-dependent homogeneous strain in uncoalesced GaN nanowires

Abstract

We investigate the strain state of ensembles of thin and nearly coalescence-free self-assembled GaN nanowires prepared by plasma-assisted molecular beam epitaxy on Ti/Al2O3 (0001) substrates. The shifts of Bragg peaks in high-resolution X-ray diffraction profiles reveal the presence of a homogeneous tensile strain in the out-of-plane direction. This strain is inversely proportional to the average nanowire radius and results from the surface stress acting on the nanowire sidewalls. The superposition of strain from nanowires with different radii in the same ensemble results in a broadening of the Bragg peaks that mimics an inhomogeneous strain on a macroscopic scale. The nanowire ensembles show a small blueshift of the bound-exciton transitions in photoluminescence spectra, reflecting the existence of a compensating in-plane compressive strain, as further supported by grazing incidence X-ray diffraction measurements carried out at a synchrotron. By combining X-ray diffraction and photoluminescence spectroscopy, the surface stress components f(x) and f(z) of the air-exposed GaN{1 (1) over bar 00} planes that constitute the nanowire sidewalls are determined experimentally to be 2.25 and -0.7 N/m, respectively. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (3)

Related concepts (20)

Related publications (40)

Ontological neighbourhood

Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des

L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s

Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).

Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.

In continuum mechanics, the Cauchy stress tensor , true stress tensor, or simply called the stress tensor is a second order tensor named after Augustin-Louis Cauchy. The tensor consists of nine components that completely define the state of stress at a point inside a material in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector e to the traction vector T(e) across an imaginary surface perpendicular to e: or, The SI units of both stress tensor and traction vector are N/m2, corresponding to the stress scalar.

Pandula Manura Liyanage, Claudia Cancellieri, Giacomo Lorenzin

Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...

Jean-François Molinari, Roozbeh Rezakhani

The state of stress in plates, where one geometric dimensions is much smaller than the others, is often assumed to be of plane stress. This assumption is justified by the fact that the out-of-plane stress components are zero on the free-surfaces of a plate ...

Brice Tanguy Alphonse Lecampion, Regina Fakhretdinova, Alexis Alejandro Sáez Uribe

Deep heat mining requires activation of slip on pre-existing geological discontinuities and the creation of hydraulically conductive fracture networks. Fluid injection or diffusion of ground waters can rise the fluid pressure near pre-existing fractures an ...

2023