**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order

Abstract

Electric dipole moments are sensitive probes of new phases in the Higgs Yukawa couplings. We calculate the complete two-loop QCD anomalous dimension matrix for the mixing of CP-odd scalar and tensor operators and apply our results for a phenomenological study of CP violation in the bottom and charm Yukawa couplings. We find large shifts of the induced Wilson coefficients at next-to-leading-logarithmic order. Using the experimental bound on the electric dipole moments of the neutron and mercury, we update the constraints on CP-violating phases in the bottom and charm quark Yukawas.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (5)

CP violation

In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch.

Electric dipole moment

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry. Theoretically, an electric dipole is defined by the first-order term of the multipole expansion; it consists of two equal and opposite charges that are infinitesimally close together, although real dipoles have separated charge.

Scalar boson

A scalar boson is a boson whose spin equals zero. A boson is a particle whose wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin–statistics theorem implies that all bosons have an integer-valued spin. Scalar bosons are the subset of bosons with zero-valued spin. The name scalar boson arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant).