Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab. Like all other quarks, the top quark is a fermion with spin 1 /2 and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of + 2 /3 e. It has a mass of 172.76GeV/c2, which is close to the rhenium atom mass. The antiparticle of the top quark is the top antiquark (symbol: , sometimes called antitop quark or simply antitop), which differs from it only in that some of its properties have equal magnitude but opposite sign. The top quark interacts with gluons of the strong interaction and is typically produced in hadron colliders via this interaction. However, once produced, the top (or antitop) can decay only through the weak force. It decays to a W boson and either a bottom quark (most frequently), a strange quark, or, on the rarest of occasions, a down quark. The Standard Model determines the top quark's mean lifetime to be roughly 5e-25s. This is about a twentieth of the timescale for strong interactions, and therefore it does not form hadrons, giving physicists a unique opportunity to study a "bare" quark (all other quarks hadronize, meaning that they combine with other quarks to form hadrons and can only be observed as such). Because the top quark is so massive, its properties allowed indirect determination of the mass of the Higgs boson (see below). As such, the top quark's properties are extensively studied as a means to discriminate between competing theories of new physics beyond the Standard Model. The top quark is the only quark that has been directly observed due to its decay time being shorter than the hadronization time.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Junqiu Liu, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer, Marko Stamenkovic
Jian Wang, Lesya Shchutska, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, François Fleuret, Elena Graverini, Renato Quagliani, Federico Betti, Andrea Merli, Aravindhan Venkateswaran, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Elisabeth Maria Niel, Alexandre Brea Rodriguez, Ettore Zaffaroni, Mingkui Wang, Zhirui Xu, Ho Ling Li, Mark Tobin, Niko Neufeld, Matthew Needham, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Xiaoxue Han, Liupan An, Federico Leo Redi, Maxime Schubiger, Hang Yin, Violaine Bellée, Preema Rennee Pais, Tara Nanut, Yao Zhou, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Maxim Karpov, Simone Meloni, Xiaoqing Zhou, Lino Ferreira Lopes, Surapat Ek-In, Carina Trippl, Sara Celani, Marco Guarise, Serhii Cholak, Viros Sriskaran, Yifeng Jiang, Dipanwita Dutta, Zheng Wang, Yong Yang, Yi Wang, Hao Liu, Gerhard Raven, Peter Clarke, Frédéric Teubert, Xiao Wang, Victor Coco, Shuai Liu, Adam Davis, Paolo Durante, Yu Zheng, Renjie Wang, Anton Petrov, Chen Chen, Alexey Boldyrev, Almagul Kondybayeva, Hossein Afsharnia