Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Spectral densityThe power spectrum of a time series describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal (including noise) as analyzed in terms of its frequency content, is called its spectrum.
Finitely generated abelian groupIn abstract algebra, an abelian group is called finitely generated if there exist finitely many elements in such that every in can be written in the form for some integers . In this case, we say that the set is a generating set of or that generate . Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. The integers, , are a finitely generated abelian group. The integers modulo , , are a finite (hence finitely generated) abelian group.
Spectral density estimationIn statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
Finitely generated algebraIn mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K. Equivalently, there exist elements s.t. the evaluation homomorphism at is surjective; thus, by applying the first isomorphism theorem, . Conversely, for any ideal is a -algebra of finite type, indeed any element of is a polynomial in the cosets with coefficients in .
Right triangleA right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle (ὀρθόσγωνία), is a triangle in which one angle is a right angle (that is, a 90-degree angle), i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry. The side opposite to the right angle is called the hypotenuse (side c in the figure).
Generating set of a moduleIn mathematics, a generating set Γ of a module M over a ring R is a subset of M such that the smallest submodule of M containing Γ is M itself (the smallest submodule containing a subset is the intersection of all submodules containing the set). The set Γ is then said to generate M. For example, the ring R is generated by the identity element 1 as a left R-module over itself. If there is a finite generating set, then a module is said to be finitely generated. This applies to ideals, which are the submodules of the ring itself.
Finitely generated groupIn algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination (under the group operation) of finitely many elements of S and of inverses of such elements. By definition, every finite group is finitely generated, since S can be taken to be G itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated.
Spectral theoremIn mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces.
GNU General Public LicenseThe GNU General Public License (GNU GPL or simply GPL) is a series of widely used free software licenses that guarantee end users the four freedoms to run, study, share, and modify the software. The license was the first copyleft for general use and was originally written by the founder of the Free Software Foundation (FSF), Richard Stallman, for the GNU Project. The license grants the recipients of a computer program the rights of the Free Software Definition.