Non-classical photon-phonon correlations at room temperature
Related publications (230)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...
Time-correlated Stokes-anti-Stokes (SaS) scattering has been studied in different transparent media, more frequently in diamond. While the nonclassical nature of the SaS scattered photons has been well established, the presence of entanglement in this spon ...
As big strides were being made in many science fields in the 1970s and 80s, faster computation for solving problems in molecular biology, semiconductor technology, aeronautics, particle physics, etc., was at the forefront of research. Parallel and super-co ...
Recent state-to-state experiments of methane scattering from Ni(111) and graphene-covered Ni(111) combined with quantum mechanical simulations suggest an intriguing correlation between the surface-induced vibrational energy redistribution (SIVR) during the ...
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy, and quantum control of mechanical oscillators via optomechanics and electromechanics. The mechanical quali ...
It's been a little more than 40 years since researchers first suggested exploiting quantum physics to build more powerful computers. During this time, we have seen the development of many quantum algorithms and significant technological advances to make th ...
Owing in large part to the advent of integrated biphoton frequency combs, recent years have witnessed increased attention to quantum information processing in the frequency domain for its inherent high dimensionality and entanglement compatible with fiber- ...
Quantum many-body dynamics generically result in increasing entanglement that eventually leads to thermalization of local observables. This makes the exact description of the dynamics complex despite the apparent simplicity of (high-temperature) thermal st ...