Publication

Microscopic origin of polarization-entangled Stokes-anti-Stokes photons in diamond

Abstract

Time-correlated Stokes-anti-Stokes (SaS) scattering has been studied in different transparent media, more frequently in diamond. While the nonclassical nature of the SaS scattered photons has been well established, the presence of entanglement in this spontaneous four-wave mixing process has not been demonstrated. Here, we show the violation of the Bell-type Clauser-Horne-Shimony-Holt inequality for the polarization of SaS photon pairs near a Raman resonance in diamond. The degree of entanglement depends on the detuning of the photon pairs from the degenerate two-photon pump and on the orientation of the polarization of the incident light with respect to the crystallographic orientation of the sample. This result opens up the possibility to tailor the quantum state of photon pairs without stringent constraints of phase matching and to combine quantum optics and SaS Raman spectroscopy for new applications in materials science and quantum information.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (13)
Nonlinear optics
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear.
Optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.
Bell test
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables (called "hidden" because they are not a feature of quantum theory) to explain the behavior of particles like photons and electrons.
Show more
Related publications (32)

Room-Temperature Quantum Optomechanics and Free-Electron Quantum Optics

Guanhao Huang

Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
EPFL2024

Generation of entangled photon pairs from a silicon bichromatic photonic crystal cavity

Matteo Galli, Marco Clementi, Thanavorn Poempool

Integrated quantum photonics leverages the on-chip generation of nonclassical states of light to realize key functionalities of quantum devices. Typically, the generation of such nonclassical states relies on whispering gallery mode resonators, such as int ...
Melville2024

Down-conversion of a single photon as a probe of many-body localization

Cristiano Ciuti

Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-freq ...
NATURE PORTFOLIO2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.