Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C-1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C-l extension theorem by ...
We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit and a dimension that scales much slower than t ...
Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standar ...
Many scientific inquiries in natural sciences involve approximating a spherical field -namely a scalar quantity defined over a continuum of directions- from generalised samples of the latter (e.g. directional samples, local averages, etc). Such an approxim ...
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We rst investigate regularized algorithms adapted to a projection operator on a closed subspace ...
In this work, we propose a unified theoretical and practical spherical approximation framework for functional inverse problems on the hypersphere. More specifically, we consider recovering spherical fields directly in the continuous domain using functional ...
We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplici ...
We introduce a generic \emph{two-loop} scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated \emph{dual problem} and takes full advantag ...
An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and sto ...
An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and sto ...