**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# On The Singular Set In The Thin Obstacle Problem: Higher-Order Blow-Ups And The Very Thin Obstacle Problem

Abstract

We consider the singular set in the thin obstacle problem with weight vertical bar x(n +1)vertical bar(a) for a epsilon (-1, 1), which arises as the local extension of the obstacle problem for the fractional Laplacian (a nonlocal problem). We develop a refined expansion of the solution around its singular points by building on the ideas introduced by Figalli and Serra to study the fine properties of the singular set in the classical obstacle problem. As a result, under a superharmonicity condition on the obstacle, we prove that each stratum of the singular set is locally contained in a single C-2 manifold, up to a lower-dimensional subset, and the top stratum is locally contained in a C-1,C-alpha manifold for some alpha > 0 if a < 0. In studying the top stratum, we discover a dichotomy, until now unseen, in this problem (or, equivalently, the fractional obstacle problem). We find that second blow-ups at singular points in the top stratum are global, homogeneous solutions to a codimension-2 lower-dimensional obstacle problem (or fractional thin obstacle problem) when a < 0, whereas second blow-ups at singular points in the top stratum are global, homogeneous, and a-harmonic polynomials when a >= 0. To do so, we establish regularity results for this codimension-2 problem, which we call the very thin obstacle problem. Our methods extend to the majority of the singular set even when no sign assumption on the Laplacian of the obstacle is made. In this general case, we are able to prove that the singular set can be covered by countably many C-2 manifolds, up to a lower-dimensional subset.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (35)

Related MOOCs (10)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...

In this article, motivated by the study of symplectic structures on manifolds with boundary and the systematic study of b-symplectic manifolds started in Guillemin, Miranda, and Pires Adv. Math. 264 (2014), 864-896, we prove a slice theorem for Lie group a ...

Related concepts (37)

, ,

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...

Differentiable manifold

In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.

Kähler manifold

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.

3-manifold

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. A topological space is a 3-manifold if it is a second-countable Hausdorff space and if every point in has a neighbourhood that is homeomorphic to Euclidean 3-space.