Publication

Experimental investigation on the moment-rotation performance of pultruded FRP web-flange junctions

Thomas Keller
2021
Journal paper
Abstract

This paper aims to present an experimental investigation on the behavior of web-flange junctions (WFJs) rotational stiffness of pultruded fiber-reinforced polymer composites (FRP). Channels and I-sections were tested using a simple set-up, which was developed in order to experimentally characterize the junctions in a direct manner. The Digital Image Correlation (DIC) technique was used, allowing overall deflections and relative rotations between web and flange to be monitored. The WFJs' imperfections were analyzed through an optical microscope and correlated with the cracks' formation. Further, damage thresholds are identified using available stress equations for curved composite members and lower bound functions are proposed to simulate the junction stiffness retention. Finally, two Equations are developed in order to analytically predict pultruded junctions' rotational stiffness per unit of width. In general, the theoretical and experimental results agreed fairly well, with a maximum difference of 24% for I-sections and 38% for channels.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Rotation
Rotation or rotational motion is the circular movement of an object around a central line, known as axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation (between arbitrary orientations), in contrast to rotation around a axis.
Quaternions and spatial rotation
Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.
Rotation formalisms in three dimensions
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Show more
Related publications (39)

Pivot, process for manufacturing such a pivot, oscillator comprising such a pivot, watch movement and timepiece comprising such an oscillator

Simon Nessim Henein, Loïc Benoît Tissot-Daguette

The present invention concerns a pivot comprising two assemblies, namely a central assembly (401) and a peripheral assembly (400). These two assemblies are mobile in rotation relative to each other around an axis of rotation (A). The pivot is characterized ...
2024

Center-Based Decoupled Point Cloud Registration for 6D Object Pose Estimation

Mathieu Salzmann, Jiancheng Yang, Zheng Dang, Haobo Jiang

In this paper, we propose a novel center-based decoupled point cloud registration framework for robust 6D object pose estimation in real-world scenarios. Our method decouples the translation from the entire transformation by predicting the object center an ...
Ieee Computer Soc2023

Shape Models of Lucy Targets (3548) Eurybates and (21900) Orus from Disk-integrated Photometry

Stephan Hellmich

We use our new light curves, along with historical data, to determine the rotation state, photometric properties, and convex shape models of the targets of the Lucy mission (3548) Eurybates and (21900) Orus. We determine a retrograde spin for both targets, ...
IOP Publishing Ltd2023
Show more
Related MOOCs (16)
Introduction to Geographic Information Systems (part 1)
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Introduction to Geographic Information Systems (part 1)
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.