p-NiO Junction Termination Extensions for High Voltage Vertical GaN Devices
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the past decades, III-nitride semiconductor compounds have attracted an increasing amount of interest due to their applications to blue-violet laser diodes and white light emitting diodes, or for their use as ultraviolet emitting devices for biomedical ...
We have studied the properties of Mg-doped GaN epilayers grown by molecular beam epitaxy (MBE) with ammonia as nitrogen source. GaN p-n homojunctions has been developed to determine the optoelectronic characteristics of the junctions as a function of the p ...
Gallium Nitride (GaN) and its ternary alloys with aluminium and indium have met a growing interest in the last decade. These semiconductors have a large direct bandgap and can be doped with either silicon (Si) for n-type and magnesium (Mg) for p-type layer ...
Resonant-cavity InGaN/GaN quantum well light emitting diodes have been fabricated. Nitride layers were grown by molecular beam epitaxy on Si (111). We fabricated the structures using a combination of Si substrate etching, GaN etching and dielectric (Ta2O5/ ...
GaN and InGaN layers are grown by molecular beam epitaxy using ammonia as nitrogen precursor. The lattice mismatch between InN and GaN is very large and a Stranski-Krastanov (SK) growth mode transition can occur above a critical In composition. However, ch ...
Nitride blue lasers including an AlInN cladding lattice matched to GaN were fabricated. Lasing at 415nm is observed at 300K with a threshold current density of 7.5kA/cm(2) and a peak power of 140mW at 1.2A. (C) 2009 Optical Society of America ...
The lack of appropriate substrates has delayed the realisation of devices based on III-nitrides. Currently, the heteroepitaxial growth of GaN by metal organic vapour phase epitaxy (MOVPE) produces GaN layers which, despite huge densities of dislocations, a ...
AlGaN/GaN quantum well (QW) structures were grown entirely by molecular-beam epitaxy on c-plane sapphire substrates. Reflection high-energy electron diffraction intensity oscillations, which testify a smooth growth front surface at the molecular monolayer ...
GaInN/GaN heterostructures have been grown by molecular beam epitaxy (MBE) on c-plane sapphire substrates. The growth of Ga1-xInxN (x > 12%) alloy has been extensively studied. At low V/III ratio, the growth undergoes a Stranski-Krastanov transition giving ...
The growth of InGaN layers was carried out by molecular beam epitaxy (MBE). The nitrogen precursor was ammonia. The optical and structural properties of the InGaN layers have been investigated by transmission electron microscopy (TEM), x-ray diffraction (X ...