Publication

Impact of Embedded Liquid Cooling on the Electrical Characteristics of GaN-on-Si Power Transistors

Abstract

Wide-Band-Gap semiconductors have enabled considerable miniaturization of power devices, which requires, however, new thermal management solutions to handle the resulting high heat fluxes. Recently, embedded liquid cooling in GaN-on-Si devices was demonstrated as a promising solution by flowing a coolant through microchannels etched in the silicon substrate. However, its impact on power devices’ electrical characteristics, especially at high voltage, is yet to be investigated, which is crucial to assess the viability of the technology. Besides, previous demonstrations were limited to relatively low-power devices, while embedded liquid cooling for high-current and high-voltage (650 V) commercial GaN transistors would show the full potential of the technology. Here, we integrate embedded liquid cooling on 650 V, 50 mΩ GaN-on-Si commercial power devices. We demonstrate no negative impact on the device dc or switching performance due to the embedded liquid cooling, which proves the robustness and validity of the technology. Besides, liquid-cooled devices show more than 4× higher current capability and much-improved RON × Eoss figure-of-merit in a large output current range compared to forced-convection air-cooling, highlighting their potential for high-current applications. Finally, deionized water and a dielectric fluid (3M Novec 7200) are compared as coolants, revealing a trade-off between thermal performance and reliability during high-voltage operation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
High-voltage direct current
A high-voltage direct current (HVDC) electric power transmission system (also called a power superhighway or an electrical superhighway) uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. Most HVDC links use voltages between 100 kV and 800 kV. However, a 1,100 kV link in China was completed in 2019 over a distance of with a power capacity of 12 GW. With this dimension, intercontinental connections become possible which could help to deal with the fluctuations of wind power and photovoltaics.
High voltage
High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures. High voltage is used in electrical power distribution, in cathode ray tubes, to generate X-rays and particle beams, to produce electrical arcs, for ignition, in photomultiplier tubes, and in high-power amplifier vacuum tubes, as well as other industrial, military and scientific applications.
Computer cooling
Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives. Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling.
Show more
Related publications (42)

A Dual-Channel Gate Driver Design with Active Voltage Balancing Circuit for Series Connection of SiC MOSFETs

Drazen Dujic

Dual-channel gate driver is commonly utilized in the industry for accommodating the widespread use of half-bridge power modules. As wide-bandgap devices become increasingly prevalent due to their superior switching characteristics compared with conventiona ...
2024

Tailoring Organic/Inorganic Interface Trap States of Metal Oxide/Polyimide toward Improved Vacuum Surface Insulation

Guang-Yu Sun, Chao Wang, Haoxiang Zhao

High-voltage and high-power devices are indispensablein spacecraftfor outer space explorations, whose operations require aerospace materialswith adequate vacuum surface insulation performance. Despite persistentattempts to fabricate such materials, current ...
AMER CHEMICAL SOC2023

Near-junction microfluidic cooling for high power-density GaN-on-Si electronics: A wafer, device, packaging, and system-level investigation

Remco Franciscus Peter van Erp

Electrification of the energy section, from generation to end-use, plays an essential role in reducing global CO2 emission. Innovations in power electronics are required to increase conversion efficiency and power density. Gallium nitride (GaN) transistors ...
EPFL2022
Show more
Related MOOCs (13)
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.