Gate Control of Spin-Layer-Locking FETs and Application to Monolayer LuIO
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We report on monolayer-to-bilayer transitions in 2D metal–organic networks (MONs) from amphiphiles supported at the water–air interface. Functionalized calix[4]arenes are assembled through the coordination of selected transition metal ions to yield monomol ...
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
NATURE PORTFOLIO2023
Recently, two-dimensional (2D) material based gas sensing, especially transition metal dichalcogenide-based sensing, has been widely investigated thanks to its room temperature sensing ability. Unlike metal oxide based sensors, 2D material-based sensing ca ...
The growth of information technology has been sustained by the miniaturization of Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FETs), with the number of devices per unit area constantly increasing, as exemplified by Mooreâs la ...
Two-dimensional (2D) crystals such as graphene or transition metal dichalcogenides (TMDCs) are a fascinating class of quantum materials. These compounds are obtained isolating the single atomic sheets that normally form bulk layered crystals, and the reduc ...
Two-dimensional semiconductors, in particular transition metal dichalcogenides and related heterostructures, have gained increasing interest as they constitute potential new building blocks for the next generation of electronic and optoelectronic applicati ...
2019
, , , ,
Atomically thin materials, such as graphene and transition metal dichalcogenides, are promising candidates for future applications in micro/nanodevices and systems. For most applications, functional nanostructures have to be patterned by lithography. Devel ...
2020
, ,
Using accurate first-principles calculations based on many-body perturbation theory, we predict that two-dimensional MoS2 hosts edge excitons with universal character, intrinsic to the existence of edges and lying well below the onset of bulk features. The ...
AMER PHYSICAL SOC2020
Two-dimensional (2D) materials, in particular graphene and transition metal dichalcogenides (TMDC), have attracted great scientific interest over the last decade, revealing exceptional mechanical, electrical and optical properties. Owing to their layered n ...
EPFL2019
, , ,
Two-dimensional materials (2DM) have emerged as potential candidates for low power electronics, optoelectronics, and sensing [1]. However, the chemical and physical processes involved in conventional lithography methods, have shown detrimental effects on 2 ...