The Quantum Fisher Information matrix (QFIM) is a central metric in promising algorithms, such as Quantum Natural Gradient Descent and Variational Quantum Imaginary Time Evolution. Computing the full QFIM for a model with d parameters, however, is computation-ally expensive and generally requires O(d(2)) function evaluations. To remedy these increasing costs in high-dimensional parameter spaces, we propose using simultaneous perturbation stochastic approximation techniques to approximate the QFIM at a constant cost. We present the resulting algorithm and successfully apply it to prepare Hamiltonian ground states and train Variational Quantum Boltzmann Machines.
Alfio Quarteroni, Francesco Regazzoni, Stefano Pagani
Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi
Mario Paolone, Vladimir Sovljanski