Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In-memory computing is an emerging non-von Neumann computing paradigm where certain computational tasks are performed in memory by exploiting the physical attributes of the memory devices. Memristive devices such as phase-change memory (PCM), where information is stored in terms of their conductance levels, are especially well suited for in-memory computing. In particular, memristive devices, when organized in a crossbar configuration can be used to perform matrix-vector multiply operations by exploiting Kirchhoff's circuit laws. To explore the feasibility of such in-memory computing cores in applications such as deep learning as well as for system-level architectural exploration, it is highly desirable to develop an accurate hardware emulator that captures the key physical attributes of the memristive devices. Here, we present one such emulator for PCM and experimentally validate it using measurements from a PCM prototype chip. Moreover, we present an application of the emulator for neural network inference where our emulator can capture the conductance evolution of approximately 400,000 PCM devices remarkably well.
Joshua Alexander Harrison Klein
Aleksandra Radenovic, Andras Kis, Mukesh Kumar Tripathi, Zhenyu Wang, Asmund Kjellegaard Ottesen, Yanfei Zhao, Guilherme Migliato Marega, Hyungoo Ji