Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We consider the problem of designing a stabilizing and optimal static controller with a pre-specified sparsity pattern. Since this problem is NP-hard in general, it is necessary to resort to approximation approaches. In this paper, we characterize a class of convex restrictions of this problem that are based on designing a separable quadratic Lyapunov function for the closed-loop system. This approach generalizes previous results based on optimizing over diagonal Lyapunov functions, thus allowing for improved feasibility and performance. Moreover, we suggest a simple procedure to compute favourable structures for the Lyapunov function yielding high-performance distributed controllers. Numerical examples validate our results.
Giancarlo Ferrari Trecate, Luca Furieri, Muhammad Zakwan, Clara Lucía Galimberti