Sparsest piecewise-linear regression of one-dimensional data
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the robust linear regression problem in the online setting where we have access to the data in a streaming manner, one data point after the other. More specifically, for a true parameter , we consider the corrupted Gaussian linear model $ y=\la ...
Background: Understanding the association between motor capacity (MC) (what people can do in a standardized environment), mobility performance (MP) (what people actually do in real-life) and falls is important for early detection of and counteracting on fu ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
The functional linear model extends the notion of linear regression to the case where the response and covariates are iid elements of an infinite-dimensional Hilbert space. The unknown to be estimated is a Hilbert-Schmidt operator, whose inverse is by defi ...
A data-driven reduced basis (RB) method for parametrized time-dependent problems is proposed. This method requires the offline preparation of a database comprising the time history of the full-order solutions at parameter locations. Based on the full-order ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
Multiple generalized additive models are a class of statistical regression models wherein parameters of probability distributions incorporate information through additive smooth functions of predictors. The functions are represented by basis function expan ...
We propose a non-intrusive reduced basis (RB) method for parametrized nonlinear partial differential equations (PDEs) that leverages models of different accuracy. The method extracts parameter locations from a collection of low-fidelity (LF) snapshots for ...
In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral/regularized algorithms, including ridge regressi ...
We introduce and analyze an algorithm for the minimization of convex functions that are the sum of differentiable terms and proximable terms composed with linear operators. The method builds upon the recently developed smoothed gap technique. In addition t ...