Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study the influence of coupling strength and network topology on synchronization behavior in pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the completely synchronous state in such networks only depends on the number of signals each neuron receives, independent from all other details of the network topology. This is in contrast with linearly coupled bursting neurons where complete synchrony strongly depends on the network structure and number of cells. Through analysis and numerics, we show that the onset of synchrony in a network with any coupling topology admitting complete synchronization is ensured by one single condition.
Eilif Benjamin Muller, Werner Alfons Hilda Van Geit, Armando Romani, Szabolcs Kali, Carmen Alina Lupascu, Paola Vitale, Rosanna Migliore, Luca Leonardo Bologna, Sàra Sàray, Shailesh Appukuttan