Center-of-momentum frameIn physics, the center-of-momentum frame (COM frame), also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The center of momentum of a system is not a location, but a collection of relative momenta/velocities: a reference frame. Thus "center of momentum" is a short for "center-of-momentum ". A special case of the center-of-momentum frame is the center-of-mass frame: an inertial frame in which the center of mass (which is a single point) remains at the origin.
LHCb experimentThe LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region.
Quantum computingA quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.
CollisionIn physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word collision refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force. In physics, collisions can be classified by the change in the total kinetic energy of the system before and after the collision: If most or all of the total kinetic energy is lost (dissipated as heat, sound, etc.
Invariant massThe invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system's total energy and momentum that is the same in all frames of reference related by Lorentz transformations. If a center-of-momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that "rest frame".
Mass–energy equivalenceIn physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicist Albert Einstein's formula: . In a reference frame where the system is moving, its relativistic energy and relativistic mass (instead of rest mass) obey the same formula. The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c2).
Mass in special relativityThe word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).
NeutronThe neutron is a subatomic particle, symbol _Neutron or _Neutron0, which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one dalton, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.
Quantum stateIn quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.
Quantum electrodynamicsIn particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.